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The notion of the almost everywhere equality of observables is introduced. The limit
of Cesaro means is an invariant observable with respect to this notion.
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1. INTRODUCTION

Let (2, S, P) be a probability space, T : 2 — 2 be a measure preserving
map, ie., T~'(A) € S and P(T~'(A)) = P(A) forany A e S. Let £: Q - R
be an integrable random variable with the mean value E(§). The individual er-
godic theorem (Petersen, 1983; Walters, 1975) guarantees the existence of random
variable £* : Q — R satisfying the following conditions:

(1) &* isintegrable and E(£*) = E(§),

(ii) %Ef‘lé oT! — £* P-almost everywhere,

(iii)) &* o T = &* P-almost everywhere.

Of course, the Kolmogorov probability theory was shown to be inadequate for
quantum mechanical systems. Therefore, some other models have been developed.
Probably the most known and successful quantum structure has been created by
quantum logics (for recent development see Dvurecenskij and Pulmannova (2000);
Riecan and Neubrunn (1997)). There are many papers concerning the individual
ergodic theorem in quantum logics, (Dvurecenskij and Riecan, 1980; Harman,
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1985; Lutterova and Pulmannova, 1985; Pulmannov4, 1982; Riecan, 1982; Vrabel,
1988).

In the 80s a new quantum mechanical model was suggested on the base of
fuzzy sets, the so-called F-quantum spaces (Riean and Neubrunn, 1997) and
also the individual ergodic theorem was proven (Harman and Riecan, 1992).
F-quantum spaces use the Zadeh connectives: maximum and minimum. Of course,
the Lukasiewicz connectives have been shown to be more convenient for quantum
structures. MV-algebras present an excellent algebraic generalization of the system
(Cignoli et al., 2000). Also probability theory on MV-algebras has been devel-
oped (for a review see RieCan and Neubrunn (1997), for recent development see
Riecan and Mundici (2001)). MV-algebras of fuzzy sets present a special but very
important case. The individual ergodic theorem for special case has been proved
in (Riecan, 2000) and (Riecan and Neubrunn, 1997) for general MV-algebras in
(Jureckova, 2000) (see also Riecan and Mundici (2001)).

In all the mentioned papers only the properties [i] and [ii] have been general-
ized. In this paper the notion of almost everywhere coincidence of observables in
MV-algebras of fuzzy sets is introduced. Using the notion of almost everywhere
coincidence of observables the property [iii] can be also generalized.

We will start with definitions of basic notions. There is given the fuzzy
quantum logic

F={f:Q— (0,1); fismeasurable}

The notion that corresponds to the notion of a random variable is an observable.
An observable is a mapping x : B(R) — F such that:

[01] x(R) = 15
[02] if AN B =@, then x(A U B) = x(A) + x(B),
[03] if A, /' A, then x(A,) / x(A).

Instead of a probability measure considered in the Kolmogorov model a state is
considered in F. A state is a mapping m : F — (0, 1) such that

[S1] m(1r) =1,
[S2] if f + g < 1x,thenm(f + g) = m(f) +m(g),
[S3] if £, /' f,thenm(f,) /" m(f).

The next notion of the joint observable corresponds to the notion of the random
vector in classical probability theory. Let x, y : B(R) — M be two observables.
The joint observable of the observables x, y is a mapping & : B(R?)— F satisfying
following conditions:

[JO1] h(R?) =15

[JO2] if AN B = @, then h(A U B) = h(A) + h(B),
[JO3] if A, /' A, then h(A,) 7 h(A),
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[JO4] h(C x D) =x(C)-y(D), C,D € B(R).

The transformation 7 : Q — € is also replaced by a mapping 7 : F — F.
A mapping t : F — F is an m-preserving transformation, if the following con-
ditions are satisfied:

[T1] =(1F) = 17,

[T2] if f +g < 1F, thent(f +g) = T(f) + (g,
(T3] if fu 7 f,thenz(fy) /7 (f),

[T4] =(f)-z(g) =T(f - 8),

[T5] ©(f A g) =T(f)AT(g),

[T6] m (z(f)) =m(f).

2. ALMOST EVERYWHERE COINCIDENCE
Definition 1. Lety, z : B(R) — F be observables and m be a state on F. We say
that they coincide m-almost everywhere, i.e., y = z m-almost everywhere, if

m (h(A)) =1,

where A = {(u,v) € R*u = v} and h : B(R)> — F is the joint observable of

Y, 2.
The notion of m-a.e. coincidence does not depend on the choice of the joint
observable 4. It follows by the following theorem.

Theorem 2. The observables y, z coincide m-almost everywhere iff

m((y(—00, u)) - (z(u, 00))) =0

and

f'or any u € R. m(()’(_OO, M)) . (Z(l/l, OO))) =0

Proof: Since

((—oo, 1) x (u, ) NA =0, ((u,00) x (—oo,u)) NA =0

and
we obtain m(h(A) =1,

0 =m ((h(—00, u) X (u, 00))) = m (y ((—00, u)) - z ((u, 00)))
and

0 =m (h((u,00) x (=00, u))) = m((y(u, 00)) - z ((—00, u))).
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We have

~ * n n n i_l i
A:ﬂ U Al x A7, where Ai:< > ﬁ)

n=1i=—o00

Therefore

m(h(8) = lim "~ m (y(A}) - 2(AD) .

i=—00

o0
Put A, = |J A’ x A!. Then

i=—00

e (U (=5« (5))
(U () (~5):

Therefore m (h(Af;)) = 0, hence m (h(A,)) = 1 and

m (h(A)) = lim m ((hA,)) = 1.

3. KOLMOGOROV CONSTRUCTION

Let &, be the joint observable of observables x, T o x, .. ., " 1o x. The Sys-

tem {P, = m o h,, n € N} is a consistent system of probability measures. By the
Kolmogorov theorem there exists a probability measure on (R, (R")) such that

P (11, '(A)) = P.(A)

for any A € BR"),n € N, where II,: B(RN) — B(R) is the projection
M, (u)2)) = @i, ...,u,). Define &:RN - R by &(@)2)=up;T:
RN — RN by T ((”i),-oil) = i), vi =ujq1. Let g, : RY — R be defined as

n n—1 n—1
gn(ul,...,un):%Zu;, N :%ZEOTZ, yn:}%Zr’ox:hnogn’l.
i=1 i=0 i=0
Theorem 3. The sequence (y,), converges m-almost everywhere to an observ-
able y and
P ({u e RY; lim 7, (u) < t}) — m (v (—00, 1))
n—0o0

foranyt € R.
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Proof: By (Riecan and Neubrunn, 1997). 0

Consider now the sequence (7 o x, 20x, 73 ox,...)and the Cesaro means

1 n
_ i _r -1
z,,——g ttox=hyo0g,,
g
im

where £, is the joint observable of the observables 7 o x, 720 x, ..., 7" 0 x.
Proposition4. 7, =t oh,, z, =T o y,.
Proof:

hp(A] X --- X Ay) = rox(Al)-tzox(Az) ----- " o x(A,)

=1 (x(A) Tox(Ar) T ox(Ay)
=to0h, (A X --- X A)).

Since 4, T o h, are o-homomorphisms, /,(C) = t o h,(C) for any C € B(R").
By the definitions and the previous formula

z,,:l_znogn_l:rohnogn_lzfoyn.

Proposition 5. Put

n+1
knprur . o ttngy) = - D up = gu(ua, ).
i=2

-1
Then z, = hpy1 0k, ;.

Proof: We have

kn—H = &n O Ty, where m,(uy, ..., un—H) = (uz, ..., un+l)-
Therefore
-1 -1 -1
Of course fsr ok = nprom, 0 g,
Bpp1 o, (A X - X Ay) = hyp (R X Ap X - X Ay)
= x1(R) - X2 (A1) - Xup1 (An) = ha(Ap X -+ X Ay).
Therefore h,4j o, ' =h, and

-1

A -1 -1 —1
2y =hy o 8 = hnyt om, ©°8, = hnyt Okn+1-
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Theorem 6. Put&, = %E{L]E o T' = n, o T.Thenthe sequence (z,), converges

m-almost everywhere to an observable z,
P({u;nllrlgo E(u) < t}) =m(z((—00,1)))

foralltandz =t o y.

Proof: By individual ergodic theorem (RieCan and Neubrunn, 1997) and
Theorem 8.6.9 (Riecan and Neubrunn, 1997) there exists z, such that z, — z
and

P({u; lim &) < 1)) = m (2 (=00, 1).
Further, by Proposition 4

z((—00,1)) = {O/ {7 /O.\zn ((—oo, r— l))

p=1k=1n=k

for any ¢. Therefore z =7 0 y. O

4. P-OBSERVABLES

Definition 7. An observable x is called to be P-observable, if x(C N D) < x(C) -
x(D) for any C, D € ().

Note that for any C € (R) there holds x(C) = x(C) - x(C). Therefore, if x is
a P-observable, the range of x is a Boolean algebra.

Theorem 8. Let x be a P-observable and h, be the joint observable of x,
To0x,...,7" Vox.Then

forany C, D € B(R").
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n—1

Proof: If x is a P-observable,thentox,..., T o x are P-observables, too,

and
Tox(CND)y=1(x(CND)) <1t(x(C)-x(D))=10x(C)-7T0x(D).

Pt C=C;x---xC,,D=D; x---xD,. ThenCND=C;ND; x---X
C, N D, and

ha(CND)=x(CiNDy)-tox(CoNDy)-----7"0x(C,N Dy,
<x(Cy)-x(Dy)-tox(Cy)-tox(Dy)----- " lox(C)-t" o
x x(Dy) = x(C1)-Tox(Cy) -+ T" " 0x(Cp) - x(Dy) - T 0 x(D2)

= " o X(D)hy(Cy x Cax -+ X Cp) - hp(Dy X Dy X -+ X D).
O

Theorem 9. Let y be a P-observable, z = t o y, T be an m-preserving transfor-
mation, and m be a state on F. Then for all t € R it holds:

m(y ((=00,1)) - z((z,00))) =0 and m(y((t,00)) - z((=00, 1))) = 0.

Proof: Evidently

> 1
m(y(=00,1))-z((t,00)) =m (y (=00, 1)) - \/ b4 <<t + . OO)>> .

n=1
Therefore, it is sufficient to prove
m (y ((—00,1)) - z({s, 00))) =0
fort < s. Of course,
m ((y(—00,1)) - z({s, 00)))
=m(y((=00,1)) - (Lr — z((=09, 5))))
=m(y((=00,1))) —m (y (=00, 1)) - 2((=00, 5))) .
We have proved that
) m@y(—o00,1)) = P ({ueRY n() <1t})
and we will prove
(k) m (y ((—00, 1)) - 2 ((—00, 5)))
> P({u e RY; nu) < t} N {u eRY £ ) < s})
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By (*) and () we obtain

m (y ((—00, 1)) - z ({s, 00)))
< P({MGRN; r/(u)<t})—P({ueRN; n(u)<t}ﬂ{u GRN;E(u)<s})

=P({MERN; n(u)<t}ﬂ{ueRN;§(u)}zs)=O

sincen = & = noT P-almost everywhere by individual ergodic theorem. Hence
the proof will be complete, if we prove (k). We know that

y (=00, 1) = <7 <o/ 7\ 7\ Y <<‘°°’t - l))

p=1k=1i=1n=k p

0o oo oo I+j
z2((=00, ) =\ VA A ((—oo,s - 1)) :
qg=11=1 j=1m=l

q

Therefore

m(y((—00, 1)) - z((—00, 5)))

ki | I+
= lim lim lim lim lim lim m (/\ Vn ((—oo t— —)) . /\Zm
n=k

P—>00 k—00i—00g—>00[—>00 j—00 P ;
m=

< (=)
( 00,1 — —)) 7\,2m(( oos——)))

m=l

1 I+j
nogy (= oor—;)) /\hmﬂokmﬂ(( oos——)))

m=I

Moreover

i >+ i >+

k+i I+
/\ w(An) - /\hU)(Bm)),

m=l

| |
/\

where w > k+i, w>1[1+j,

A, =m)! (gl <(—oo, t— l)>> yBn=m (k_ ((—oo, s — l)>> ,
w,n n p w, m+1 m+1 q
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t,s, p, q being constant. By monotonicity of /,, we obtain

k+i
h(An) = o, (ﬂAn>, n=k, ... k+i,

n=k
hence
k+i k+i
/\ huw(An) = h An>
n=k n=k
Similarly

By these relations and Theorem 8 we obtain

k+i I+j k+i
/\hw(An) : /\hw(Bm) = hw (( An) N < )) .
n=k m=l n=k

Therefore
k+i I+j 1
n t_ - m - D T
(A ((or=3)) As((0-3)))
k+i I+j
= (- ((0 ) (0)))
k+i I+j
- (m((0r) ()
n=k m=lI
k+i 1
=P RN: n e, Up - —
(Q{ue ; &n (U U, <t p}
I+j 1
X N {MGR;km+1(u1,...,um+1)<s——}),
m=l q
hence

m (y ((=00, 1)) - z((—00, 5)))

k+i
> lim lim lim lim lim lim P(ﬂ {MGRN; gy, ... uy) <t ——
p

P—>00 k—00i—00g—>00[—00 j—00 h
n=
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I+j 1
N {MGRN; km+1(u1,...,um+1)<s——}
q

m=l

=P GGﬁ{ueRN;nn(u)<t—l}ﬂGGﬁ
p=1k=1n=k p

X {u ERN;E,,(M)<S—1}>
q

:P({MERN; r](u)<t}ﬂ{ueRN;§(u)<s}).

We have proved («x) and therefore the theorem, too. O
Theorem 10. y =z =10y m-almost everywhere.

Proof: It follows by Theorem 2 and Theorem 9. O
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